

eskulu.com

ECZ GRADE 12 CHEMISTRY SUMMARISED NOTES (FOR 5070 & 5124) WITH QUESTIONS AND ANSWERS

ESKULU ZM

4/30/18

G12 CHEMISTRY SUMMARIZED NOTES(5070 & 5124) *This document summarizes Chemistry (5070 & 5124)) notes according to the ECZ (Examinations Council Syllabus).*

The questions and answers are adapted from actual Cambridge past exam papers.

Prepared by Jeffrey M for eskulu.com

Contact +260978031524

UNIT 1. METALS	4
Topic 1.1- What is a Metal?	4
Topic 1.2- Chemical Properties of Metals	5
Topic 1.3- Extraction of Metals	9
Topic 1.4- Alloys	
Topic 1.5- Corrosion of Metals	
EXAM TYPE QUESTIONS AND ANSWERS	
UNIT 2. NON METALS	
Topic 2.1- Non Metals: Key Points	
Topic 2.2- What are Non Metals?	
Topic 2.3- Hydrogen	
Topic 2.4- Oxygen	
Topic 2.5- Ammonia	
Topic 2.6- Carbon	
Topic 2.7 Limestone and its Uses	
EXAM TYPE QUESTIONS AND ANSWERS	41
UNIT 3. ORGANIC CHEMISTRY	47
Topic 3.1- Organic Chemistry: Key Points	47
Topic 3.2- Alkanes	47
Topic 3.3- Isomers: Branched Chain Alkanes	
Topic 3.4- Making Alkanes	
Topic 3.5- Chemical Behaviour of Alkanes	53
Topic 3.6- Alkenes	53
Topic 3.7- Chemical Behaviour of Alkenes	55
Topic 3.8- Addition Reactions:	
Topic 3.10- Alcohols, Carboxylic Acids, Esters: Key Points	
Topic 3.11 – Alcohols	60
Topic 3.12- Properties of Alcohols	62
Topic 3.13 Carboxylic Acids	64
Topic 3.14 Esters	66
UNIT 4 MACROMOLECULES	67
Topic 4.1- Macromolecules: Key Points	67

Topic 4.2- Synthetic Polymers	68
Topic 4.3 – Natural Macromolecules	70
EXAM TYPE QUESTIONS AND ANSWERS	73
References	86

UNIT 1. METALS

Topic 1.1- What is a Metal?

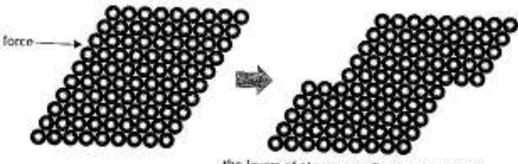
A metal is a chemical element that is an effective conductor of electricity and heat and good at forming cations with non-metals.

These elements are on the left side of the periodic table

Physical properties of metals;

- high densities
- high melting points / high boiling points
 because atoms in metals are held together tightly, therefore it requires more energy(heat) to pull them apart
- are good conductors of heat
 the moving electrons help carry heat energy
- good conductors of electricity
 outer electrons easily move away from the metal atom, producing a sea of electrons
- high tensile strength
- are malleable -the layers of atoms can slip past each other
- are ductile (able to be drawn into thin wire)

METAL	DENSITY(g/cm ³)	MELTING POINT(^o C)	BOILING POINT(°C)
Aluminium	2.7	659	2447
Gold	19.3	1063	2600
Iron	7.9	1540	3000
Magnesium	1.7	650	1110
Tungsten	19.4	3410	5930
Zinc	7.1	420	908


Structure of Metals

Metal atoms are arranged in rows, similar to how ions are arranged in ionic compounds. Outer electrons in the atom can easily be lost because they are far away from the nucleus – hence these electrons move freely.

This forms rows of positive ions surrounded by a sea of moving electrons

Metals can be stretched into wires when warm and soft because the particles vibrate faster and further away from each other in the metal

Metals are malleable because the layers of atoms do not move apart

the layers of atoms can slip past each other

Topic 1.2- Chemical Properties of Metals

Sodium is soft and reacts violently with both air and water. Iron also reacts with air and water but much more slowly, forming rust.

Remember:

- The reactivity of metals varies.
- More reactive metals displace less reactive metals. This happens in "displacement reactions"
- All reactions between water and a metal will produce hydrogen gas and a metal hydroxide.
- Aluminum is a reactive Metal but appears unreactive because it is coated with aluminium oxide which prevents further reaction
- Nitrates, carbonates and hydroxides of all metals (except Group 1) decompose on heating

Reaction between Metals and Water

METAL	REACTION WITH WATER
Potassium	Potassium will burn on ice. It reacts rapidly with water
Sodium	Also reacts rapidly but does not burn on ice
Calcium	Reacts rapidly with water and produces hydrogen bubbles
Magnesium	Reacts slowly with cold water. Magnesium will burn in steam
Zinc and Iron	Reacts very slow with water
Aluminium	Will not react with water but corrosion is seen if water is impure
Copper	Will not react with water at all

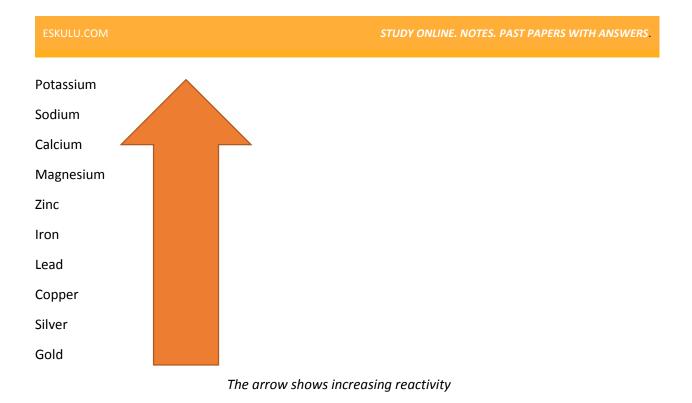
When water reacts with these metals, hydrogen gas is produced. We can test for hydrogen gas. Hydrogen will put out a burning splint with a pop sound.

An example of the reacting a metal with water

 $Ca_{(s)} + 2H_2O_{(I)} - ---- \rightarrow Ca(OH)_{2(aq)} + H_{2(g)2}$

Reactions between Metals and Acid

- Hydrogen gas and a salt is produced
- Heat is emitted, the reaction is exothermic.


Example

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

The Reactivity Series

Shows the order of the most reactive metal to the least reactive metal.

The more reactive metal is the one that has the highest tendency to lose outer electrons to form a positive metal ion.

Reaction with Oxygen/Air.

Metals react directly with oxygen to form oxides.

e.g $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$

Decomposition of Metal Nitrates, Carbonates, Oxides and Hydroxides.

The decomposition processes are different, depending on the position of the metal in the reactivity series.

Metal Nitrates,

Nitrates of reactive metals are heated and decompose to produce the Metal Nitrite and Oxygen gas.

e.g 2NaNO₃(s) $\stackrel{\text{heat}}{\rightarrow}$ 2NaNO₂(s) + O₂(g)

Nitrates of moderately reactive metals decompose to produce poisonous brown fumes of nitrogen dioxide gas and a metal oxide plus oxygen gas.

e.g $2Mg(NO_3)_2(s) \xrightarrow{heat} 2MgO(s) + 4NO_2(g)O_2(g)$

Unreactive metal nitrates decompose to give the metal, nitrogen dioxide gas and oxygen.

Metal Carbonates

They undergo decomposition to give the metal oxide and carbon dioxide gas.

 $CaCO_3(s) \xrightarrow{heat} CaO(s) + CO_2(g)$

Very reactive metals e.g potassium and sodium do not easily undergo any decomposition reaction. The less reactive the metal, the lower the temperature needed to make the carbonate decompose. The carbonates of unreactive metals such as gold, silver and platinum are too unstable to exist.

Metal Hydroxides

Hydroxides of reactive metals show no decomposition when they are heated.

The hydroxides of moderately reactive metals decompose to produce: Metal oxide + Water.

This process is used to convert calcium hydroxide (slaked lime) into calcium oxide (lime).

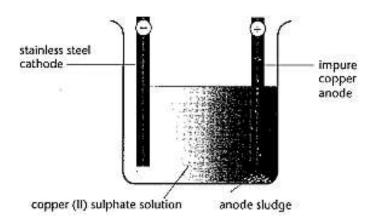
 $Ca(OH)_2(s) \xrightarrow{heat} \rightarrow CaO(s) + H_2O(g)$

Topic 1.3- Extraction of Metals

Metals are extracted from "ores"

Some common ores;

METAL	NAME OF ORE	CHEMICAL COMPOUND IN ORE	FORMULA	METHOD OF EXTRACTION
Aluminium	Bauxite	Aluminium Oxide	$AI_2O_32H_2O$	Electrolysis
Copper	Copper Pyrites	Copper Iron Sulfide	CuFeS ₂	Roasting in air
Iron	Haematite	Iron(iii)oxide	Fe ₂ O ₃	Heat oxide with carbon
Sodium	Rock salt	Sodium Cholride	NaCl	Electrolysis
Zinc	Zinc Blende	Zinc Sulfide	ZnS	Roasted in air and heated in carbon


Making Copper from its Ore

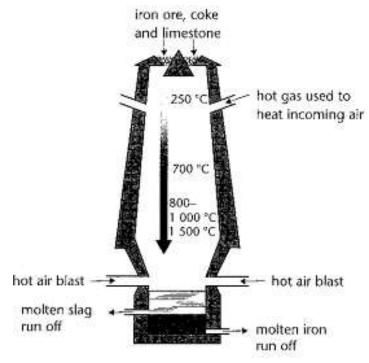
This is how copper is extracted from Chalcopyrite, the most common copper ore in Zambia.

- It is mixed with sand and heated strongly with air.
 2CuFeS₂ + 2SiO₂ {Sand} + 4O₂ → Cu₂S + 2FeSiO₃ + 3SO₂
- 2. The Copper Sulphide (Cu₂S) is heated again to produce blister copper (99% pure)

Making Pure Copper from Electrolysis

The electrolysis cell contains a stainless steel cathode (-) and an impure copper anode (+)

The positive copper ions are attracted to the cathode. A layer of copper is formed on each side of the cathode.


Making Iron from its Ore

Iron is extracted mainly from its oxides, hematite (Fe₂O₃) and magnetite (Fe₃O₄).

• Extraction occurs in the blast furnace. It is loaded with iron ore (usually haematite), coke (made by heating coal) and limestone (calcium carbonate). A blast of hot air is sent in near the bottom of the furnace through holes (tuyères) which makes the ore glow, as the coke burns in the preheated air.

a blast furnace

Reactions in the Blast Furnace

 The limestone begins to decompose: CaCO₃(s) { calcium carbonate } → CaO(s) {calcium oxide} + CO₂(g)

- The carbon dioxide gas produced reacts with more hot coke higher up in the furnace, producing carbon monoxide in an endothermic reaction.
 CO₂(g) + C(s) { coke } → 2CO(g) { carbon monoxide }
- Carbon monoxide is a reducing agent. It rises up the furnace and reduces the iron(iii) oxide ore. This takes place at a temperature of around 700°C: Fe₂O₃(s) { iron(iii) oxide } + 3CO(g) → 2Fe(I){ iron } + 3CO₂(g) { carbon dioxide }
- Calcium oxide is a base and this reacts with acidic impurities such as silicon(iv) oxide in the iron, to form a slag which is mainly calcium silicate.
 CaO(s) + SiO2(s){ silicon(iv) oxide } → CaSiO3(l){ calcium silicate }

The slag trickles to the bottom of the furnace, but because it is less dense than the molten iron, it floats on top of it.

* Metallic oxides, such as calcium oxide (CaO), are basic and non-metallic oxides, such as silicon(iv) oxide (SiO2), are acidic.

* Certain oxides, such as carbon monoxide (CO), are neutral and others, such as zinc oxide (ZnO), are amphoteric

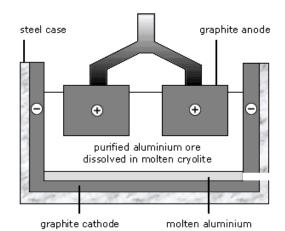
Making Zinc from its Ore

The main source of zinc is zinc sulfide or zinc blende.

• The zinc sulfide is heated very strongly in a current of air in a furnace to convert it to the oxide:

 $2ZnS(s) \{ zinc sulfide \} + 3O_2(g) \{ oxygen \} \rightarrow 2ZnO(s) \{ zinc oxide \} + 2SO_2(g) \{ sulfur dioxide \} \}$

- Sulfur dioxide is a useful co-product and is used in the manufacture of sulfuric acid.
- The zinc oxide is heated alongside coke in a furnace to a temperature of approximately 1400°C. The zinc oxide is reduced by the coke to zinc:


 $ZnO(s) \{zinc oxide\} + C(s) \{coke\} \rightarrow Zn(g) \{zinc\} + CO(g) \{carbon monoxide\}$

- Zinc can also be extracted by electrolysis of Zinc Sulphate.
- Zinc is used in alloys such as brass. It is also used to galvanise steel and for electrodes in batteries

Extraction of aluminium

- Aluminium is the most **abundant** metal on Earth. Despite this, it is **expensive**, largely because of the amount of **electricity** used up in the extraction process.
- Aluminium ore is called **bauxite**. The bauxite is purified to yield a white powder, aluminium oxide, from which aluminium can be extracted.
- The extraction is done by **electrolysis.** But first the aluminium oxide must be made **molten** so that electricity can pass through it. Aluminium oxide has a very high melting point (over

2,000°C), so it would be expensive to melt it. Instead, it is **dissolved** in **molten cryolite**, an aluminium compound with a lower melting point than aluminium oxide. The use of cryolite reduces some of the energy costs involved in extracting aluminium.

The diagram shows an aluminium oxide electrolysis tank. Both the negative electrode (cathode) and positive electrode (anode) are made of **graphite**, a form of carbon.

Aluminium metal forms at the negative electrode and sinks to the bottom of the tank, where it is tapped off.

Oxygen forms at the positive electrodes. This oxygen reacts with the carbon of the positive electrodes, forming carbon dioxide, and they gradually burn away. Consequently, the positive electrodes have to be replaced frequently, which adds to the cost of the process

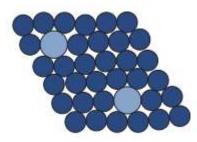
Topic 1.4- Alloys

What is an Alloy?

The majority of the metallic substances used today are alloys. Alloys are mixtures of two or more metals and are formed by mixing molten metals thoroughly.

Types of Steel Alloys

Steel is the most widely used alloy of Iron. It is mixed with carbon


Carbon Steels;

KIND OF STEEL	PERCENTAGE OF CARBON %	USES
Cast Iron	4+	Engine blocks, drain covers
High Carbon	0.8 to 1.5	Knives, razor blades
Medium Carbon	0.3 to 0.8	Railway lines, springs
Low Carbon	Less than 0.3	Car bodies, rivets

Steel is mixed with other metals to form Alloy Steels;

NAME	COMPOSITION	USES
Chromium Steel	Up to 5% chromium	Ball bearings
Colbalt Steel	Up to 10% cobalt	Magnets
Molybdenum Steel	Up to 4% molybdenum	Gun barrels
Vanadium Steel	Up to 2% vanadium	Spanners, tools
Tungsten Steel	Up to 18% tungsten	Amour plate
Stainless Steel	18& chromium, 8% nickel	Sinks, cutlery, vessels to hold corrosive
		chemicals and foodstuffs

Metals can be made stronger when they are mixed with a small amount of another metal that has atoms of different size;

Atoms of different sizes

Some Useful Alloys:

ALLOY	COMPOSITION	SOME USES	PROPERTIES
Duralumin	Aluminium, copper, magnesium	Aeroplanes	Light and Strong
Brass	Copper, zinc	Doorknobs, ornaments	Corrosion resistant and hard, readily pressed into shapes
Bronze	Copper, tin, zinc	Ships' propellers, church bells, statues	Corrosion resistant, looks like silver
Cupro-nickel	Copper, nickel	Silver coins	Corrosion resistant, looks like silver
Titanium alloy	Titanium, iron, carbon	Aeroplanes	Light and strong, low expansion when heated

ESKULU.COM		STUDY ONLIN	STUDY ONLINE. NOTES. PAST PAPERS WITH ANSWERS.	
Solder	Lead, zinc	Joining wires, copper pipes	Very low melting point	

Uses of Some Metals

Copper

- Electrical wires
- Electrical equipment
- Domestic water pipes

Zinc

- Coat steel to stop it from rusting (galvanizing)
- Making brass

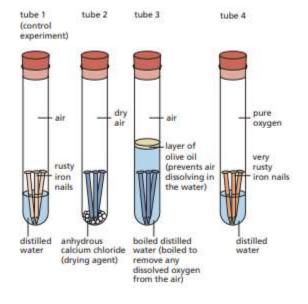
Aluminium

- Make objects for lightness and corrosion resistance
- Aircraft, car engines, pans, kitchen foil, window frames, some coins

Iron

• Making steel because pure iron is weak

Topic 1.5- Corrosion of Metals


Rusting is the most common form of corrosion but this term is used for iron and steel.

Corrosion is the process which takes place when metals and alloys are chemically attacked by oxygen, water or any other substances found in their environment.

- The higher the metal is in the reactivity series, the more rapidly it will corrode.
- Gold and platinum are unreactive and do not corrode, even after thousands of years.

Causes of Rusting of Iron

- 1. Air(Oxygen)
- 2. Water
- The nail in the dry air did not rust at all
- The nail in the water with no dissolved air did not rust either
- The nail in the one with water and air rusted alot

Prevention of Corrosion

METAL OBJECT	METHOD	ADVANTAGE OF USING THIS METHOD
Car bodies	Paint	Easily applied; looks attractive
Bicycle chain	Oil	Protects moving parts, other coatings will wear off
Iron roofing	Galvanizing (the sheet is coated with a layer of zinc, which corrodes first)	Long-lasting; easy to apply
Food can	Tin plating(steel is coated with a layer of tin)	Tin does not corrode easily
Cutlery	Silver electroplating(using electricity)	very attractive, even and hard wearing

EXAM TYPE QUESTIONS AND ANSWERS INSTRUCTIONS:

Attempt the questions before you look at the answers

1. Gallium is a metallic element in Group III. It has similar properties to aluminium.

(a) (i) Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer.

	[3]
(ii) Explain why metallic elements such as gallium are good conductors of electricity.	
	[1]
(b) Give the formula of gallium(III) chloride,	
gallium(III) sulfate.	
(c) Gallium(III) oxide, Ga_2O_3 , is amphoteric.	

(i) Write the chemical equation for the reaction between gallium(III) oxide and dilute nitric acid to form a salt and water only.

(ii) The reaction between gallium(III) oxide and sodium hydroxide solution forms only water and a salt containing the negative ion $Ga_2O_4^{2-}$. Write the chemical equation for this reaction.

(d) Alloys of gallium and other elements are often more useful than the metallic element itself.

Suggest two reasons why alloys of gallium are more useful than the metallic element.

.....

ANSWERS

1. (a) (i) Diagram must have positive ions (labelled/named) [1 mark] Diagram must have electrons (labelled/named) [1 mark] Diagram must show attraction between positive and negative [1 mark] (a)(ii) Conduction due to movement of electrons/mobile electrons [1 mark] (b) GaCl₃ [1 mark] Ga₂(SO₄) [1 mark] (c) (i) O_3 + 6HNO₃ \rightarrow 2Ga(NO₃)₃ + 3H₂O [2 marks] formula of Ga(NO₃); all formulae and balancing correct (c) (ii) O_3 + 2NaOH \rightarrow Na₂Ga₂O₄ + H₂O [2 marks] formula of Na2Ga2O4; all formulae and balancing correct (d) any 2 from: [2 marks] (do not) corrode • Strong Hard (improved) appearance

2. Zinc is extracted from an ore called zinc blende, which consists mainly of zinc sulfide, ZnS.

(a) (i) The zinc sulfide in the ore is first converted into zinc oxide.

Describe how zinc oxide is made from zinc sulfide.

.....

(ii) Write a chemical equation for the reaction in (a)(i).

(b) Zinc oxide is converted into zinc. Zinc oxide and coke are fed into a furnace. Hot air is blown into the bottom of the furnace.

Zinc has a melting point of 420 °C and a boiling point of 907 °C. The temperature inside the furnace is over 1000 °C.

(i) Explain how zinc oxide is converted into zinc. Your answer should include details of how the heat is produced and equations for all the reactions you describe.

[3]

(ii) Explain why the zinc produced inside the furnace is a gas.

(iii) State the name of the physical change for conversion of gaseous zinc into molten zinc.

......[1]

(c) Rusting of steel can be prevented by coating the steel with a layer of zinc.

Explain, in terms of electron transfer, why steel does not rust even if the layer of zinc is scratched so that the steel is exposed to air and water.

[4]

(d) When a sample of steel is added to dilute hydrochloric acid, an aqueous solution of iron(II) chloride, FeCl₂, is formed. When a sample of rust is added to dilute hydrochloric acid, an aqueous solution of iron(III) chloride, FeCl₃, is formed.

(i) Aqueous sodium hydroxide is added to the solutions of iron(II) chloride and iron(III) chloride.

Complete the table below, showing the observations you would expect to make.

	iron(II) chloride solution	iron(III) chloride solution
aqueous sodium hydroxide		

[2]

Solutions of iron(II) chloride and iron(III) chloride were added to solutions of potassium iodide and acidified potassium manganate(VII). The results are shown in the table.

	iron(II) chloride solution	iron(III) chloride solution
potassium iodide solution	no change	solution turns from colourless to brown
acidified potassium manganate(VII) solution	solution turns from purple to colourless	no change

(ii) What types of substance cause potassium iodide solution to turn from colorless to brown?

.....[1]

(iii) What types of substance cause acidified potassium manganate(VII) solution to turn from purple to colourless?

(iv) Which ion in iron(III) chloride solution causes potassium iodide solution to turn from colourless to brown?

(v) Which ion in iron(II) chloride solution causes acidified potassium manganate(VII) solution to turn from purple to colourless?

ANSWERS

2(a)(i) /heat and in air / oxygen [1 mark] (a)(ii) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ SO_2 on right of equation; all formulae and balancing correct [1 mark]

(b)(i) heat produced by carbon/coke (burning in) oxygen/air [1 mark] OR C + $O_2 \rightarrow CO_2$ produces heat / exothermic OR 2C + $O_2 \rightarrow 2CO$ produces heat/exothermic

 $\begin{array}{ccc} C &+ & CO_2 & \rightarrow & 2CO \\ OR \\ 2C &+ & O_2 & \rightarrow & 2CO \end{array}$

 $ZnO + CO \rightarrow Zn + CO_2$ OR $ZnO + C \rightarrow Zn + CO$ OR $2ZnO + C \rightarrow 2Zn + CO_2$ [1 mark]

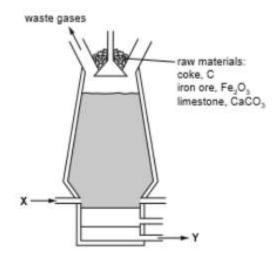
[1 mark]

(b)(ii) temperature (inside the furnace) is above 907°C/temperature (inside furnace) is above the boiling point (of zinc) 1000°C is above the boiling point (of zinc) [1 mark]

(b)(iii) condensing/condense

[1 mark]

(c) zinc is more reactive than iron / zinc is higher in the reactivity series in the reactivity series [4marks]


STUDY ONLINE. NOTES. PAST PAPERS WITH ANSWERS.

zinc loses electrons

iron/steel/oxygen/air/water gains electrons OR electrons move to iron/steel/oxygen/air/water (therefore) iron does not lose electrons/get oxidized/form Iron

(d)(i) green precipitate red-brown/brown/orange	e precipitate	[1 mark] [1 mark]
(d)(ii) oxidizing agent/oxidant (d)(iii)reducing agent/reductan	t [1 mark]	
(d)(iv)iron(iii)/Fe³+ (d)(v) iron(ii)/Fe²+	[1 mark] [1 mark]	

3. The diagram shows a blast furnace.

- (a) The following equations represent reactions which take place in the blast furnace.
 - A. C + $O_2 \rightarrow CO_2$
 - B. CaCO₃ \rightarrow CaO + CO₂
 - C. CaO + SiO₂ \rightarrow CaSiO₃
 - D. CO₂ + C \rightarrow 2CO
 - E. Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂

(i) Which reaction is used to increase the temperature inside the blast furnace? [1]

(ii) Which reaction is an example of thermal decomposition? [1]

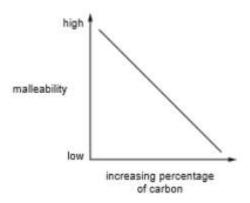
(iii) In which reaction is carbon both oxidised and reduced? [1]

(iv) Which equation shows the removal of an impurity from the iron? [1]

(v) Which equation shows the reaction of an acidic substance with a basic substance?.........[1]

(b) Use the diagram of the blast furnace to help you answer these questions.

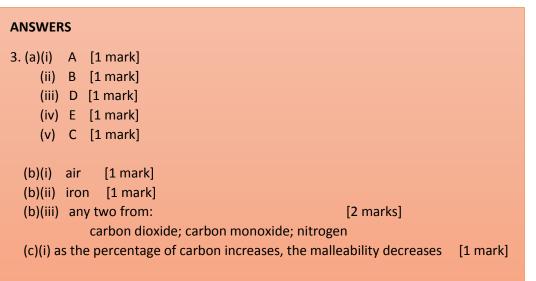
(i) What enters the blast furnace at X?


(ii) What leaves the blast furnace at Y?

......[1]

(iii) Name two waste gases that leave the blast furnace.

1.


(c) The graph shows how the malleability of iron changes as the percentage of carbon in the iron changes.

(i) D escribe how the malleability of iron changes as the percentage of carbon changes.

(ii) Iron obtained from the blast furnace contains high levels of carbon.Explain how the amount of carbon in the iron can be decreased.

.....

(c)(ii) m1	oxygen (gas) blown in	[1 mark]
m2	carbon dioxide formed/C + $O_2 \rightarrow CO_2$	[1 mark]

- 4. W, X and Y are metals, one of which is copper and one of which is iron.
- W has a coloured oxide which can be reduced by carbon.
- X has a black oxide and is also found in nature as a pure metal.
- Y has an oxide which cannot be reduced by carbon.

Which metal is the most reactive and what is the possible identity of W?

	most reactive metal	possible identity of W
A	x	С
в	x	F
с	Y	с
D	Y	F

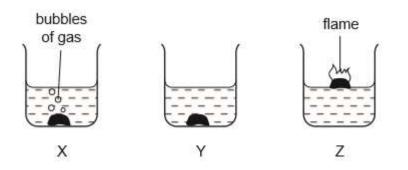
5. Tin is a metal that is less reactive than iron and is extracted from its ore cassiterite, SnO₂.

Which statements about tin are correct?

1 Tin can be extracted from cassiterite using carbon.

2 Tin does not conduct electricity.

3 Tin is hard and shiny.


A. 1, 2 B. 1 and 2 only C. 1 and 3 only D. 2 and 3 only

6. Some chemical properties of three metals W, X and Y and their oxides are shown.

metal	reaction with steam	reaction with dilute hydrochloric acid	reaction of metal oxide with carbon
W	reacts	reacts	reacts
х	no reaction	no reaction	reacts
Y	reacts	reacts	no reaction

What is the order of reactivity of these metals? Most reactive first.

- $A. \: W \to Y \to X$
- $B. \: X \to Y \to W$
- $C. \: Y \to W \to X$
- $D. \: Y \to X \to W$
 - 7. The diagrams show what happens when three different metals are added to water.

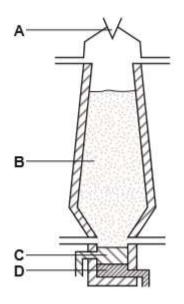
What are X, Y and Z?

	х	Y	Z
A	calcium	copper	potassium
в	copper	calcium	potassium
C	potassium	calcium	copper
D	potassium	copper	calcium

- 8. Which substances do not react together?
 - A. calcium + water
 - B. copper + dilute hydrochloric acid
 - C. sodium + water
 - D. zinc + dilute hydrochloric acid
- 9. In an experiment, three test-tubes labelled X, Y and Z were half-filled with dilute hydrochloric acid. A different metal was added to each test-tube. After a few minutes the following observations were made.
 - In tube X, bubbles slowly rose to the surface.
 - In tube Y, there was a rapid release of bubbles.
 - In tube Z, no bubbles were produced.

Which three metals match the observations?

	tube X	tube Y	tube Z
A	copper	zinc	iron
в	magnesium	iron	copper
с	zinc	magnesium	copper
D	zinc	magnesium	iron


10. Iron from a blast furnace is treated with oxygen and with calcium oxide to make steel.

Which substances in the iron are removed?

	oxygen removes	calcium oxide removes
Α	carbon	acidic oxides
в	carbon	basic oxides
С	iron	acidic oxides
D	iron	basic oxides

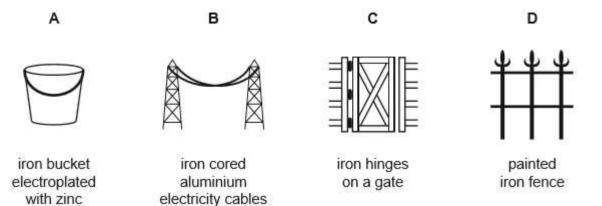
	1	2	3	4
A	carbon	nitrogen	calcium carbonate	acidic
в	carbon	oxygen	calcium oxide	acidic
c	carbon	oxygen	calcium oxide	basic
D	sand	oxygen	calcium oxide	basic

- 12. Iron is extracted from its ore (hematite) in the blast furnace.Which gas is produced as a waste product?
 - A. carbon dioxide
 - B. hydrogen
 - C. nitrogen
 - D. oxygen
- 13. The diagram shows a blast furnace.In which part is iron ore changed to iron?

- 14. Which statement is incorrect?
 - A. Carbon dioxide is a waste product in the extraction of iron.
 - B. Carbon monoxide is a reducing agent.
 - C. The extraction of iron from hematite involves reduction.
 - D. When iron is converted into steel, oxygen is used to oxidise the iron.
- 15. Many metals are extracted from their ores by heating the metal oxide with carbon. Which metal cannot be extracted using this method?
 - A. aluminium
 - B. copper
 - C. iron
 - D. zinc
- 16. Some metals react readily with dilute hydrochloric acid. Some metals can be extracted by heating their oxides with carbon. For which metal are both statements correct?
 - A. calcium
 - B. copper
 - C. iron
 - D. magnesium
- 17. Which statement about the uses of metals is correct?

- A. Aluminium is used in the manufacture of aircraft because of its strength and high density.
- B. Copper is used in electrical wiring because of its strength and high density.
- C. Mild steel is used in the manufacture of car bodies because of its strength and resistance to corrosion.
- D. Stainless steel is used in the construction of chemical plant because of its strength and resistance to corrosion.
- 18. Copper is sometimes used to make cooking utensils.

Three properties of copper are given.


- 1. corrosion resistant
- 2. good conductor of electricity
- 3. good conductor of heat

Which properties make copper a suitable metal for making cooking utensils?

A. 1 and 3 B. 1 only C. 2 and 3 D. 2 only

19. The diagrams show four uses of iron.

In which of these uses is the iron most likely to rust?

- 20. Duralumin is an alloy. It contains aluminium, copper and magnesium. It has many uses including the manufacture of cooking utensils and ships. Which statement about duralumin and its properties is correct?
 - A. It is a good conductor of electricity.
 - B. It is brittle.
 - C. It is soluble in water.
 - D. The aluminium, copper and magnesium are chemically combined.

ANSWERS		
4. D	12. A	20. A
5. C	13. B	
6. C	14. D	
7. A	15. A	
8. B	16. C	
9. C	17. D	
10. A	18. A	
11. B	19. C	

UNIT 2. NON METALS

Topic 2.1- Non Metals: Key Points

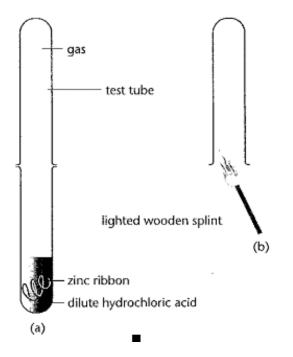
- Non-metal elements usually have low melting and boiling points, are poor conductors of heat and electricity, and have low densities
- They are found in Groups IV to VIII of the Periodic Table. They form negative ions in ionic compounds with metals and covalent compounds with each other
- Hydrogen is prepared by the action of a reactive metal with an acid
- Properties of Hydrogen; lighter than air, explodes when mixed with oxygen and ignited, has no effect on red or blue litmus paper
- Hydrogen is manufactured from natural gas and also from water
- Main uses of Hydrogen; manufacture of ammonia, filling balloons, hydrogen is used as a fuel
- Properties of Oxygen; Colourless and odourless, slightly soluble in water
- Oxygen is manufactured by fractional distillation.
- Main uses of Oxygen; welding metals, as a chemical reagent in industries, in hospitals, spacecrafts and scuba-diving where it is used for breathing and respiration
- Ozone (O₃) is a form of oxygen, that forms in the upper atmosphere. It forms a protective layer that keeps out harmful radiation
- Water is the oxide of hydrogen.
- Water turns white copper sulphate blue
- Nitrogen makes 80% of the atmosphere. It is very unreactive
- Nitrogen is manufactured by fractional distillation of liquid air
- Main uses of Nitrogen: refrigeration, particularly in machinery such as electrical transformers

- Ammonia is a useful compound of Nitrogen. It is made by the Haber Process in which hydrogen and nitrogen combine at a pressure of 200 atm and a temperature of 450°C. Ammonia can be converted to nitrates by mixing it with air and passing the mixture over a platinum gauze catalyst
- Nitrates are used as fertilizers
- Ammonia is a gas with a very unpleasant smell, and which dissolves readily in water to form ammonium hydroxide
- The test for ammonia gas is that it turns moist red litmus paper blue
- Acids react with Ammonium Hydroxide to form Ammonium Salts. Ammonium Salts decompose when heated to form ammonia
- Carbon exists in different forms called Allotropes. The 2 common allotropes being diamond and graphite
- Carbon dioxide is colourless, odourless and heavier than air. It is slightly soluble in water and turns moist blue litmus paper red
- Carbon dioxide turns clear lime water milky
- Carbon dioxide Uses; soft drinks, dry ice and photosynthesis
- Limestone is calcium carbonate. It is used to make cement, quicklime(calcium hydroxide) and slaked lime(calcium oxide)
- Carbon monoxide is colourless, odourless, poisonous and does not dissolve in water. It is a neutral oxide.
- Carbon monoxide Uses: It is the reducing agent in many furnaces

Topic 2.2- What are Non Metals?

Elements on the right side of the Periodic Table and have the following properties;

- Low melting points
- Low boiling points
- Lower densities than metals
- Electrical insulators
- Not ductile


- Poor conductors of heat
- Brittle when solid

Examples;

- Water (H₂O)
- Methane (CH₄)
- Oxygen (O)

Topic 2.3- Hydrogen

Preparing and Testing for Hydrogen

Hydrogen puts out a burning split with a pop sound

The reaction summarized is

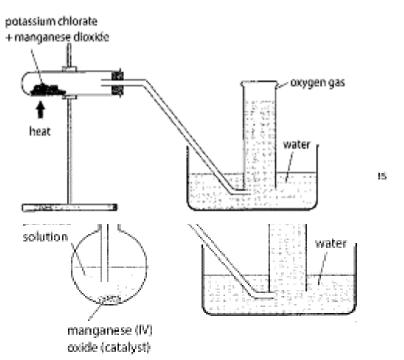
 $Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$

Industrial Preparation of Hydrogen

Method 1: Using Methane

- Methane is heated with steam at a high temperature (1000°C) in the presence of nickel to give a mixture of carbon monoxide and hydrogen CH₄ + H₂O → CO + 3H₂
- 2. Additional hydrogen is generated through another reaction at a temperature of (360°C) CO + $H_2O \rightarrow CO_2 + H_2$

The waste product is carbon dioxide


Method 2: Electrolysis of Water

Hydrogen is produced at the cathode and oxygen at the anode.

Topic 2.4- Oxygen

It is the most common element in the earth's crust. 50% of rocks are made of compounds of oxygen

Preparing Oxygen

In both situations, the oxygen is collected 'over water'. This is a common way of collecting a gas that is not soluble in water and has a similar density to air

The chemical reactions that take place are as follows; Potassium chlorate \rightarrow potassium chloride + oxygen

 $2KCIO_3(s) \rightarrow 2KCI(s)$

Hydrogen peroxide \rightarrow water + oxygen

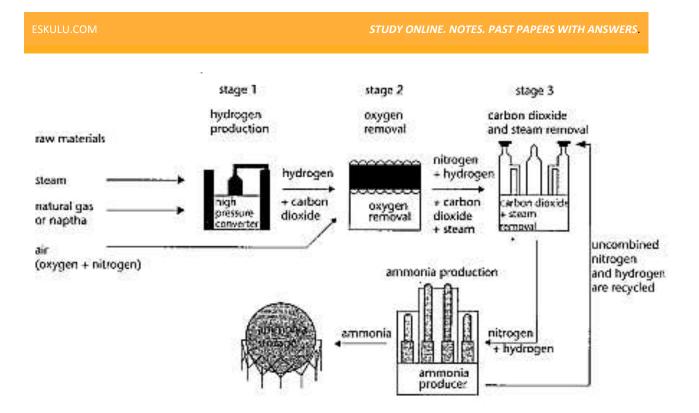
 $2H_2O_2 \rightarrow 2H_2O + O_2$

Industrial Manufacture of Oxygen

Fractional distillation of air is used. Nitrogen changes to gas at -196°C. Oxygen boils off next at -183°C

Topic 2.5- Ammonia

Ammonia is produced through the Haber Process.

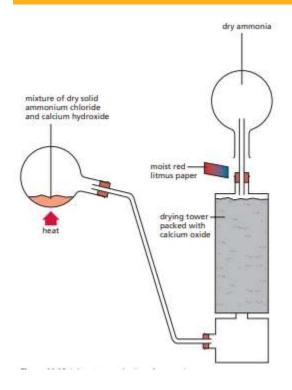

The Haber Process

In the Haber process, nitrogen and hydrogen in the correct proportions (1:3) are pressurised to approximately 200 atm and passed over a catalyst of Iron at a temperature of between 350°C and 500°C.

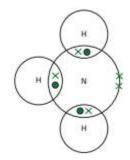
The reaction in the Haber process is:

Nitrogen + Hydrogen \rightarrow Ammonia N₂(g) + 3H₂(g) \rightarrow 2NH₃(g) Δ H = -92kJmol-1

The reaction is exothermic.


Under these conditions the gas mixture leaving the reaction vessel contains about 15% ammonia, which is removed by cooling and condensing it as a liquid.

The unreacted nitrogen and hydrogen are re-circulated into the reaction vessel to react together once more to produce further quantities of ammonia.


The 15% of ammonia produced does not seem a great deal. The reason for this is the reversible nature of the reaction. Once the ammonia is made from nitrogen and hydrogen, it decomposes to produce nitrogen and hydrogen.

There comes a point when the rate at which the nitrogen and hydrogen react to produce ammonia is equal to the rate at which the ammonia decomposes. This situation is called a chemical equilibrium. Because the processes continue to happen, the equilibrium is said to be 'dynamic'

Laboratory Preparation of Ammonia

The Ammonia Molecule

Properties of Ammonia

The reason ammonia is so soluble in water is that some of it reacts with the water.

Ammonia solution is a weak alkali, although dry ammonia gas is not. This is because a little of the ammonia gas has reacted with the water, producing ammonium ions and hydroxide ions.

The solution is only weakly alkaline because of the reversible nature of this reaction, which results in a relatively low concentration of hydroxide ions

Ammonia gas dissolved in water is usually known as aqueous ammonia.

Aqueous ammonia can be used to identify salts of Cu2+, Fe2+, Fe3+, Al3+, Zn2+, Cr3+ and Ca2+ ions.

The colour of the precipitate or solution formed identifies the metal present

Topic 2.6- Carbon

Carbon is a non-metallic element which exists in more than one solid structural form.

Its allotropes are called graphite and diamond.

Each of the allotropes has a different structure and so the allotropes exhibit different physical properties

The different physical properties that they exhibit lead to the allotropes being used in different ways

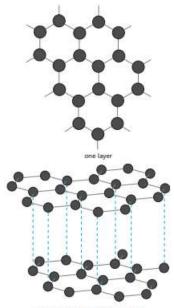
Property	Graphite	Diamond
Appearance	A dark grey, shiny solid	A colourless transparent crystal which sparkles in light
Electrical conductivity	Conducts electricity	Does not conduct electricity
Hardness	A soft material with a slippery feel	A very hard substance
Density/g cm ⁻³	2.25	3.51

Uses of Diamond

- Jewellery
- Glass cutters
- Drill bits
- Polishers

Uses of Graphite

- Pencils
- Electrodes
- Lubricant

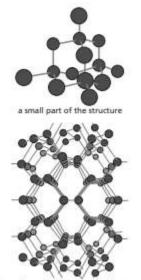

Structure of Graphite

Within each layer, each carbon atom is bonded to three others by strong covalent bonds.

Each layer is therefore like a giant molecule.

Between these layers there are weak forces of attraction (van der Waals' forces) and so the layers will pass over each other easily.

With only three covalent bonds formed between carbon atoms within the layers, there is an 'unbonded' electron



showing how the layers fit together

Structure of Diamond

Each of the carbon atoms in the giant structure is covalently bonded to four others.

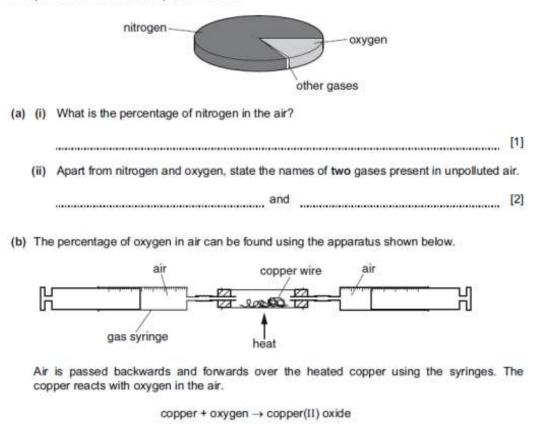
They form a tetrahedral arrangement similar to that found in silicon(iv) oxide.

a view of a much larger part of the structure

Topic 2.7 Limestone and its Uses

Limestone is composed of calcium carbonate (CaCO $_3$)

Limestone has a variety of uses in, for example, the making of cement, road building, glass making and the extraction of iron


EXAM TYPE QUESTIONS AND ANSWERS

INSTRUCTIONS:

Attempt the questions before looking at the answers

1.

The pie chart shows the composition of air.

As the experiment proceeds, suggest what happens to

(i) the total volume of air in the gas syringes,

	[1	T.
 	1.	۶.

- (ii) the mass of the wire in the tube.
 - [1]

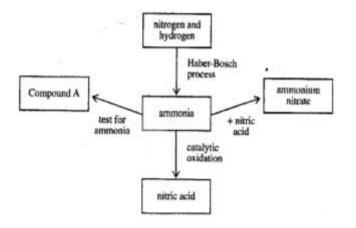
ANSWERS

1 (a) (i) 78 (%) allow: 78–80

(ii) Any two of: carbon dioxide; argon; neon; xenon; helium; radon; water; not: hydrogen

- (b) (i) decreases /gets less /gets lower/gets used up
 - (ii) increases /gets more/greater
 - 2. (a) Ammonia is an alkaline gas and it reacts readily with dilute sulphuric acid to produce a solution of ammonium sulphate.
 - (i) Describe the test you would carry out to confirm the presence of the sulphate ion.

Name of reagent used:[1]


(ii) Ammonia sulphate reacts with sodium hydroxide when heated. Write a balanced equation for the reaction.

......[2]

- (b) Ammonia dissolves readily in water to form aqueous ammonia. Aqueous ammonia is used to test for metal cations in solution.
- (i) What would you observe if aqueous ammonia was added dropwise to a solution of copper (II) sulphate CuSO_{4(aq)}?

.....[2]

(c) The diagram shows some of the essential reactions and industrial processes associated with ammonia

(i) Describe a chemical test for ammonia, giving the result of the test.

.....[3]

(ii) Name the compound A.

.....[1]

(iii) Describe the production of ammonia in the Haber-Bosch process. Your answer should include the name of the catalyst used, the approximate temperature and pressure and a balanced, symbol equation.

(d) Garden lawn fertiliser often contains ammonium nitrate in addition to iron (II) sulphate, which is used to kill moss.

(i) Write a balanced, symbol equation for the reaction of ammonia and nitric acid to produce ammonium nitrate.

.....[2]

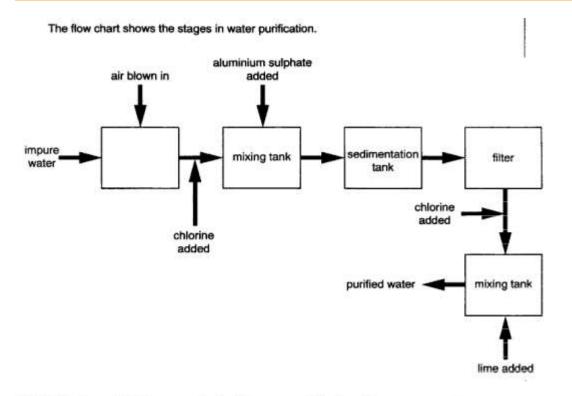
(ii) Describe, giving practical details, how you would prove that lawn fertiliser pellets contain iron(II) sulphate and not iron(III) sulphate. Give the expected

ANSWERS

(2)(a)(i)Name of reagent used: barium chloride [1 mark]

Result of test: white precipitate [2 marks]

(ii)(NH₄)₂ SO₄ + 2NaOH \rightarrow Na₂ SO₄ + 2NH₃ + 2H₂O [2 marks]


(b)(i)Blue precipitate [2 marks]

- (c)(i)Hydrogen chloride/concentrated hydrochloric acid [1] white[1]smoke/fumes/solid[1 mark] (ii)Ammonium Chloride [1 mark]
 - (iii) The key points of this answer are: nitrogen [1]hydrogen [1] catalyst = iron [1 mark], temperature = 450°C [1], pressure = 200 atm [1 mark], N₂ + 3H₂ ⇔ 2NH₃ [2 marks]
 Cool to liquify ammonia [1 mark]
 Unreacted gases recycled [1 mark]
- (d)(i) $NH_3 + HNO_3 \rightarrow NH_4NO_3$ [2 marks]

(ii) Add water [1], add ammonia solution/NaOH solution [1], green[1], precipitate [1], red brown precipitate indicates Fe³⁺ [1 mark]

3.

(a)	State two uses of water in the home.
	1
	2
(b)	State the boiling point of pure water.
	[2]
(c)	Describe a chemical test for water.
	Test
	Result[2]

(d) Air is blown into impure water to help remove dissolved iron compounds.

(i)	How could you test for iron(III) ions in the water?
	Test
	Result[2]
(ii)	Which two gases make up most of the air?
	and[2]

- (e) When chlorine is added during the water purification process, the water becomes acidic.
 - (i) Why is chlorine added during the water purification process?

.....[1]

- (ii) Suggest why lime is added after chlorination.
 - ------

......[2]

(f) The filter consists of a mixture of sand and stones.

Suggest how the filter helps purify the water.

ANSWERS

3(a) any two uses e.g. washing, drinking, sanitation, growing plants, etc.

(b) 100°C

(c) test add anhydrous / white copper sulphate or anhydrous / blue cobalt chloride result copper sulphate goes blue/ cobalt chloride goes pink

(d) (i) test add (sodium/potassium/other suitable) hydroxide or add ammonia result brown/red-brown precipitate

(ii) nitrogen, oxygen

(e) (i) to kill bacteria/germs/to disinfect the water

(ii) lime is alkaline to neutralise the acid/ chlorine/to increase the pH

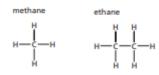
(f) impure water contains some solids trapped on stones/ sand water drains through

UNIT 3. ORGANIC CHEMISTRY

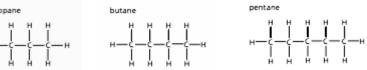
Topic 3.1- Organic Chemistry: Key Points

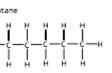
- The element carbon forms many compounds found in living things. The study of these compounds is called organic chemistry.
- Hydrocarbons are organic compounds consisting entirely of hydrogen and carbon.
- Alkanes are saturated hydrocarbons. Therefore all carbon to carbon bonds are single.
- The general formula of alkanes: C_nH_{2n+2}
- Alkenes are unsaturated hydrocarbons that contain at least one double carbon to carbon bond
- A homologous series is a series of compounds with the same functional group and similar chemical properties
- Alkenes undergo addition reactions with reagents such as halogens, hydrogen, steam and hydrogen halides, to form compounds in which the reagents have added onto the double bond
- Alkenes undergo addition polymerization at high temperatures and pressure, and in the presence of a catalyst
- Alkanes and alkenes show structural isomerism (same empirical formula but different structure).
- Alkenes show positional isomerism (same empirical formula but different position of the double carbon to carbon bond).
- Alkanes are made by fractional distillation of crude oil. They are used as fuel and as basic chemicals from which many other organic chemicals are made
- Alkenes are made by cracking alkanes by heating alkanes at high temperatures in the presence of a catalyst.

Topic 3.2- Alkanes


Most of the hydrocarbons in crude oil belong to the family of compounds called alkanes. The molecules within the alkane family contain carbon atoms covalently bonded to four other atoms by single bonds. Because these molecules possess only single bonds they are said to be saturated, as no further atoms can be added.

You will notice from the diagrams below that the compounds have a similar structure and similar name endings. They also behave chemically in a similar way. A family with these factors in common is called a homologous series. All the members of a homologous series can also be represented by a general formula.


In the case of the alkanes the general formula is:

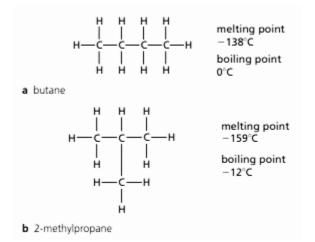

C_nH_{2n+2} where n is the number of carbon atoms present.

As you go up a homologous series, in order of increasing number of carbon atoms, the physical properties of the compounds gradually change. For example, the melting and boiling points of the alkanes shown in the following table gradually increase. This is due to an increase in the intermolecular forces (van der Waals' forces) as the size and mass of the molecule increases. Under normal conditions molecules with up to four carbon atoms are gases, those with between five and 16 carbon atoms are liquids, while those with more than 16 carbon atoms are solids.

н)	())
(H	Ś	C.	\bigcirc
math	ane mo	lecule (C)	4.4

Alkane	Formula	Melting point/ °C	Boiling point/ °C	Physical state at room temperature
Methane	CH ₄	-182	-162	Gas
Ethane	C ₂ H ₆	-183	-89	Gas
Propane	C ₃ H ₈	-188	-42	Gas
Butane	C ₄ H ₁₀	-138	0	Gas
Pentane	C5H12	-130	36	Liquid
Hexane	C ₆ H ₁₄	-95	69	Liquid

The Names of Alkanes:

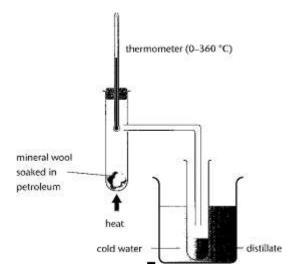

The name of an alkane is based on the latin names for the numbers.

meth- has one carbon atom i.e methane eth- has two carbon atoms i.e ethane **prop**- has three carbon atoms but- has four carbon atoms pent- has five carbon atoms hex- has six carbon atoms hept- has seven carbon atoms oct- has eight carbon atoms **non**- has nine carbon atoms i.e **nonane** dec has ten carbon atoms i.e decane

Topic 3.3- Isomers: Branched Chain Alkanes

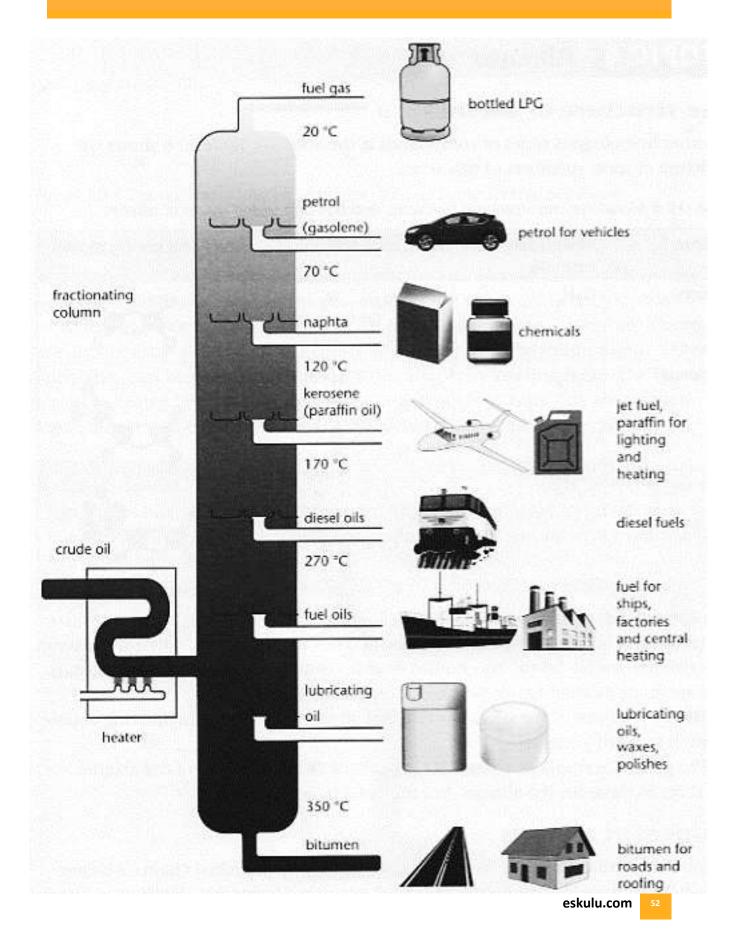
More than one structural formula can represent a molecular formula. The structural formula of a compound shows how the atoms are joined together by the covalent bonds. E.g, there are two different compounds with the molecular formula C_4H_{10} .

The structural formulae of these two substances along with their names and physical properties are shown below.


These are known as isomers. Isomers are substances which have the same molecular formula but different structural formulae.

The different structures of the compounds have different melting and boiling points. Molecule **b** contains a branched chain and has a lower melting point than molecule **a**, which has no branched chain.

All the alkane molecules with four or more carbon atoms possess isomers.


Topic 3.4- Making Alkanes

Crude oil, often called petroleum, can be distilled using the simple equipment shown below

in industrial manufacture of alkanes, the fractions with the lowest boiling points burn easily with clear flame. The fractions with the higher boiling points need a wick to burn well and they have a smoky flame. The following table shows the commercial names and properties of common fractions from crude oil.

Boiling Range	20- 70°C	70- 120°C	120- 170 °C	170- 240 °C	Over 240 °C (left behind in heating tube)
Name of Fraction	Petrol	Naphtha	Paraffin	Diesel oil	Bitumen
Colour	Pale yellow	Yellow	Dark yellow	Brown	Black
Viscosity	Runny	Fairly Runny	Fairly Viscous	Viscous	Very Viscous
How does it burn?	Easily with clear yellow flame	Quite easily with yellow flame, some smoke	Harder to burn, quite smoky flame	Hard to burn, smoky flame	Very difficult to ignite
Number of carbon atoms in the molecules	5-10	8-12	9-16	15-30	Over 25
Uses	Fuel for vehicles, chemicals	Chemicals	Fuel for heating, jet engines, chemicals	Fuel for diesel engines, trains and heating, lubricants	Roofing, waterproofing, roads

Topic 3.5- Chemical Behaviour of Alkanes

Alkanes are rather unreactive compounds. For example, they are generally not affected by alkalis, acids or many other substances. Their most important property is that they burn easily.

Chlorine atoms react with methane molecules, and a hydrogen chloride molecule is produced along with a methyl free radical.

 $\begin{array}{rll} \mbox{chlorine + methane} & \rightarrow & \mbox{methyl} & + & \mbox{hydrogen atom radical chloride} \\ \mbox{Cl}(g) & + & \mbox{CH}_4(g) & \rightarrow & \mbox{CH}_3(g) & + & \mbox{HCl}(g) \end{array}$

The methyl free radical reacts further.

methyl + chlorine \rightarrow chloromethane + chlorine radical gas atom CH₃(g) + Cl₂(g) \rightarrow CH₃Cl(g) + Cl(g)

This chlorine free radical, in turn, reacts further and the process continues until all the chlorine and the methane have been used up. This type of process is known as a chain reaction and it is very fast.

The overall chemical equation for this process is:

methane + chlorine \rightarrow chloromethane + hydrogen chloride

$CH4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$

This type of reaction is known as a substitution reaction.

Because we cannot control the chlorine free radicals produced in this reaction, we also obtain small amounts of other 'substituted' products;

CH2Cl2 (dichloromethane) CHCl3 (trichloromethane or chloroform) and CCl4 (tetrachloromethane) – by further reactions such as those shown below.

 $\begin{array}{ll} \mbox{chloromethane} + \mbox{chlorimethyl} + \mbox{hylromethyl} + \mbox{hylromethyl} + \mbox{hylromethyl} \\ \mbox{CH3Cl(g)} & + \mbox{Cl(g)} & + \mbox{Cl(g)} & + \mbox{HCl(g)} \\ \end{array}$

chloromethyl + chlorine \rightarrow dichloromethane + chlorine radical gas atom CH2Cl(g) + Cl2(g) \rightarrow CH2Cl2(g) + Cl(g)

Many of these so-called 'halogenoalkanes' are used as solvents. For example, dichloromethane is used as a solvent in paint stripper

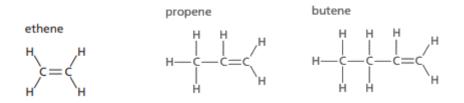
Topic 3.6- Alkenes

This is another homologous series of compounds, with general formula:

C_nH_{2n} where n is the number of carbon atoms.

The alkenes are more reactive than the alkanes because they each contain a double covalent bond between the carbon atoms.

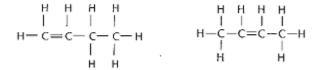
Molecules that possess a double covalent bond of this kind are said to be **unsaturated**, because it is possible to break one of the two bonds to add extra atoms to the molecule.


All alkenes have names ending in -ene. Alkenes, especially ethene, are very important industrial chemicals.

They are used extensively in the plastics industry and in the production of alcohols such as ethanol and propanol

The first 3 alkenes:

Alkene	Formula	Melting point/°C	Boiling point/°C	Physical state at room temperature
Ethene	C ₂ H ₄	-169	-104	Gas
Propene	C ₃ H ₆	-185	-47	Gas
Butene	C ₄ H ₈	-184	-6	Gas


Ethene has 2 carbon atoms Propene has 3 carbon atoms Butene has 4 carbon atoms

Isomer of Alkenes:

Alkenes show isomerism caused by branched chains (structural isomerism) and also another kind of isomerism called **positional isomerism**.

The following shows the systematic names of the two isomers of butane. The numbers in front of the 'ene' is the number in the carbon chain where the double bond starts

Where do we get Alkenes from?

Very few alkenes are found in nature. Most of the alkenes are obtained by breaking up larger alkane molecules

This is usually done by a process called **catalytic cracking**.

In this process the alkane molecules to be 'cracked' (split up) are passed over a mixture of aluminium and chromium oxides heated to about 500°C.

```
dodecane C_{12}H_{26}(g) (found in kerosene) \rightarrow decane C_{10}H_{22}(g) shorter alkane + ethene C_2H_4(g) alkene
```

Another possibility is:

 $C_{12}H_{26}(g) \rightarrow C_8H_{18}(g) + C_4H_8(g)$

There is a further cracking process which is more versatile, called thermal cracking.

Thermal cracking is carried out at a higher temperature than catalytic cracking, 800–850°C. Larger alkane molecules can be more successfully cracked using this process than by the catalytic method.

Note that in these reactions hydrogen may also be formed during cracking. The amount of hydrogen produced depends on the conditions used.

Topic 3.7- Chemical Behaviour of Alkenes

The double bond makes alkenes more reactive than alkanes in chemical reactions.

For example, hydrogen adds across the double bond of ethene, under suitable conditions, forming ethane

REACTION	Set fire to ethene	Add some drops of bromine water to ethane then shake	Adds some drops of potassium permanganate solution and shake
OBSERVATION	Burns with yellowish flame and the gas produced turns lime water milky;	The brown bromine water turns colourless	Solution turns colourless (a little should be added)
EXPLANATION	Ethene burns to form carbon dioxide and water	The bromine has reacted with the ethane	The potassium permanganate has reacted with the ethane

The following table summarizes the properties of alkenes

Topic 3.8- Addition Reactions:

These are reactions where two or more molecules combine to form a larger one

• Hydrogenation

The conditions necessary for this reaction to take place are a temperature of 200 °C in the presence of a nickel or platinum catalyst.

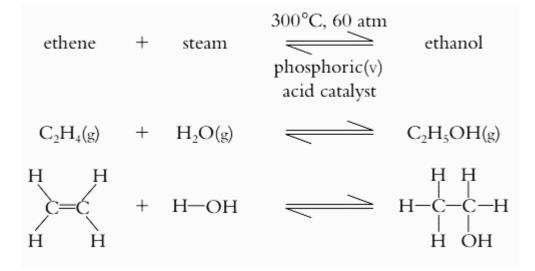
 $C_2H_4(g) + H_{2(g)} \rightarrow C_2H_6(g)$

Hydrogenation reactions like the one shown with ethene are used in the manufacture of margarines from vegetable oils.

Vegetable oils contain fatty acids, such as linoleic acid (C18H32O2).

These are unsaturated molecules, containing several double bonds. These double bonds make the molecule less flexible.

Hydrogenation can convert these molecules into more saturated ones. Now the molecules are less rigid and can flex and twist more easily, and hence pack more closely together.


This in turn causes an increase in the intermolecular forces and so raises the melting point.

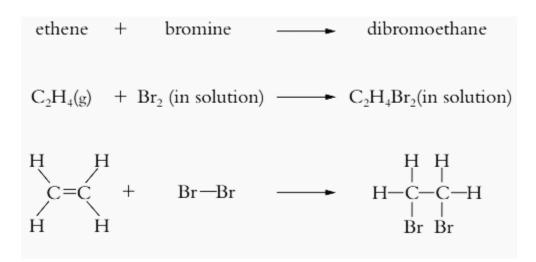
• Hydration

Another important addition reaction is the one used in the manufacture of ethanol. Ethanol has important uses as a solvent and a fuel.

It is formed when water (as steam) is added across the double bond in ethene.

For this reaction to take place, the reactants have to be passed over a catalyst of phosphoric(v) acid (absorbed on silica pellets) at a temperature of 300 °C and pressure of 60 atmospheres (1 atmosphere = 1×10^5 pascals)

This reaction is reversible as is shown by the equilibrium sign.


The conditions have been chosen to ensure the highest possible yield of ethanol. In other words, the conditions have been chosen so that they favour the forward reaction.

• Halogenation – a test for unsaturated compounds.

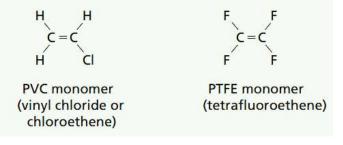
The addition reaction between bromine dissolved in an organic solvent, or water, and alkenes is used as a chemical test for the presence of a double bond between two carbon atoms.

When a few drops of this bromine solution are shaken with the hydrocarbon, if it is an alkene, such as ethene, a reaction takes place in which bromine joins to the alkene double bond. This results in the bromine solution losing its red/brown colour.


If an alkane, such as hexane, is shaken with a bromine solution of this type, no colour change takes place. This is because there are no double bonds between the carbon atoms of alkanes.

An atom of bromine adds to each carbon at both ends of the double bond. All the halogens react with alkenes this way.

Polymerisation


Polythene is a plastic. It is made by heating ethene to a relatively high temperature under a high pressure in the presence of a catalyst.

where n is a very large number

In polyethene the ethene molecules have joined together to form a very long hydrocarbon chain. The ethene molecules are able to form chains like this because they possess carbon to carbon double bonds.

Many other addition polymers have been produced. Often the plastics are produced with particular properties in mind, for example PVC (polyvinyl chloride or poly(chloroethene)) and PTFE (poly(tetrafluoroethene)). Both of these plastics have monomer units similar to ethene.

If we use chloroethene, the polymer we make is slightly stronger and harder than poly(ethene) and is particularly good for making pipes for plumbing.

The following table summarizes the reactions of alkenes

Reagent	What is happening
Bromine water (Br ₂)	An atom of bromine adds to each carbon at both ends of the double
	bond. All the halogens react like this
Hydrogen (H₂)	An atom of hydrogen adds to each carbon at both ends of the double bond. This is quite a difficult reaction requiring heat and a catalyst. It is an important industrial reaction used, for example, to convert vegetable oils into margarine
Hydrogen chloride(HCl)	An atom of hydrogen adds to one carbon and an atom of chlorine adds to the other carbon. The usual reagent used is not the gas hydrogen chloride, but concentrated hydrochloric acid
Water (H ₂ O)	An atom of hydrogen adds to one carbon and the group –OH, called the hydroxyl group, adds to the other carbon. This is what happens when potassium permanganate solution is added to an alkene

Topic 3.10- Alcohols, Carboxylic Acids, Esters: Key Points

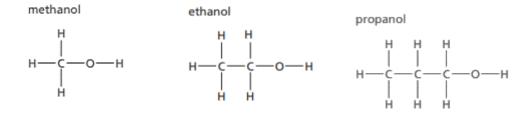
- Alcohols (alkanols) are compounds that have a carbon and hydrogen structure similar to alkanes, and also contain a hydroxyl group. The general formulae of alcohols is *C_nH_{2n+1}OH*
- Alcohols show both positional and structural isomerism. Structural isomers have branched carbon chains; with positional isomers, the hydroxyl group is different carbon atoms in the chain
- Alcohols can be made from alkenes by their reaction with steam and by the hydrolysis of esters. Ethanol is made industrially by the fermentation of sugar using yeast
- Alcohols burn in air to give carbon dioxide and water. They can be dehydrated to give alkenes, oxidised to carboxylic acids and they form esters when they react with carboxylic acids
- Ethanol is a useful fuel, solvent and disinfectant
- Carboxylic acids are compounds containing the –COOH group. The hydrogen atom in this group can readily be ionised, and these compounds are acids. They are weak acids (pH mainly around 3) and react with metals, carbonates and alkalis in the same way that other acids do
- Carboxylic acids can be prepared from alcohols by heating the alcohol with an oxidizing agent such as potassium permanganate or potassium dichromate
- Carboxylic acids react with alcohols to form esters
- There are many carboxylic acids and they have many uses. Many are present in food or are used in cooking. Soaps are salts of carboxylic acids
- Esters are made by heating carboxylic acids with alcohol in the presence of an acid catalyst. They are mainly liquids and usually have sweet smells

- Esters are constructed from two alkyl groups joined with the ester (-CO O-) linkage. They take their names from the alcohol and carboxylic acid from which they are made
- Esters can be hydrolysed to form a carboxylic acid and alcohol. Animal fats and vegetable oils are examples of esters and these can be hydrolysed to make soaps, which are the salts of carboxylic acids
- Esters are common in nature, often causing the taste and smell of foods, such as fruit

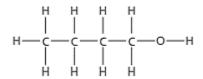
Topic 3.11 – Alcohols

The alcohols (alkanols) form another homologous series with the general formula

$C_nH_{2n+1}OH$ (or R-OH, where R represents an alkyl group)


All the alcohols possess an –OH as the functional group.

Name	Molecular structure	Structural formula	Ball and spring formula
Methanol	СН₃ОН	H H—C—OH H	B-0-8
Ethanol	C ₂ H ₅ OH	H H H-C-C-OH H H	
Propanol	C ₃ H ₇ OH	H H H H - I - I HCCOH I - I H H H	


The following table shows the names and condensed formulae of the first four members along with their melting and boiling points.

Alcohol	Formula	Melting point/ °C	Boiling point/ °C
Methanol	СН₃ОН	-94	64
Ethanol	CH ₃ CH ₂ OH	-117	78
Propanol	CH ₃ CH ₂ CH ₂ OH	-126	97
Butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	-89	117

The alcohols are named by reference to the corresponding alkane.

butanol

Isomers of Alcohols

 C_3H_7 is propanol. There are 2 possible structures of propanol.

These two isomers are different because the -OH group is attached to a different carbon in the chain. Isomerism can also be caused by branched chains. The following are all the possible isomers of pentanol, C_5H_{11}

(a)	ннннн но-с-с-с-с-с-н і і і і нннин	(b)	H H H H HD-C-C-C-C-H H H H H H H-C-H	(c)	НННН H-C-C-C-C-C-H H ОНН Н Н
(d)	нннн Н-С-С-С-С-Н нноннн		Ĥ		
(e)	H OHH H H-C-C-C-C-H H H H H-C-H H H H-C-H H	(f)	H OHH H H-C-C-C-C-H H H H H-C-H H H H-C-H H	(g)	H H H H HO-C-C-C-C-H H H H H H H H-C-H H

Preparation of Alcohols

Alcohols can be made in the lab in 2 ways:

- 1. By the reaction between steam and an alkene
- 2. By the hydrolysis of esters

1. The Reaction between Steam and an Alkene

Ethene is heated to 300°C under pressure with steam and phosphoric acid. Most of the ethanol used in industries is made this way

2. The Hydrolysis of Esters

The ethanol in wines and beers is made from sugars by **fermentation**. This is a process carried out by organisms called yeast. The following equation represents the reaction

Sugar $\xrightarrow{\text{yeast}}$ Ethanol + Water C₆H₁₂O₆ (l) \rightarrow 2C₂H₅OH(l) + H₂O(g)

Topic 3.12- Properties of Alcohols

-Alcohols have relatively high boiling points and relatively low volatility compared to other organic compounds.

-Alcohol molecules are polar because of the presence of the -OH group

-Ethanol is by far the most important of the alcohols and is often just called 'alcohol'.

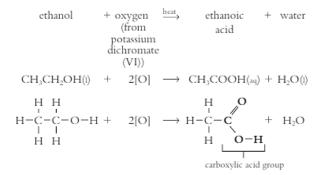
-It is a neutral, colourless, volatile liquid which does not conduct electricity. The more concentrated forms of alcoholic drinks such as the spirits whiskey and brandy contain high concentrations of ethanol.

Combustion

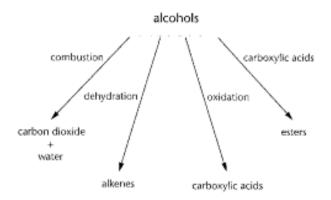
Ethanol burns quite readily with a clean, hot flame.

ethanol + oxygen \rightarrow carbon + water + energy dioxide

 $CH_3CH_2OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g) + energy$


As methylated spirit, it is used in spirit (camping) stoves. Methylated spirit is ethanol with small amounts of poisonous substances.

It is also used as fuel.


Oxidation

Ethanol can be oxidised to ethanoic acid (an organic acid also called acetic acid) by powerful oxidising agents, such as warm acidified potassium dichromate(vi), or potassium manganate(vii).

During the reaction the orange colour of potassium dichromate(vi) changes to a dark green as the ethanol is oxidised to ethanoic acid.

Other Reactions of Alcohols

Preparation of Carboxylic Acids

The oxidation of alcohols produces carboxylic acids.

All alcohols will react with an oxidizing agent to give a carboxylic acid. For example, butanol will give butanoic acid

Topic 3.13 Carboxylic Acids

The carboxylic acids form another homologous series, with the general formula

$C_nH_{2n+1}COOH$ where n = number of carbon atoms

All the carboxylic acids possess –COOH as their functional group

Name of acid	Methanoic	Ethanoic	Propanoic	Bdutanoic
Formula	HCOOH	CH3COOH	CH2HSCOOH	CH ₃ H ₇ COOH
Structural formula	н-с ⁰ он	H-C-COH	H H O H-C-C-C H H H OH	H H H H-C-C-C-C H H H H OH
Number of carbon atoms	1	2	3	4
Boiling point	101 °C	118 °C	141 °C	165 °C

Carboxylic acids have strong smells

Each member of the series has one -CH2- more than the previous one

All carboxylic acids have a systematic name that ends in 'oic acid'

The most common carboxylic acid is ethanoic acid. It is found in vinegar.

Ethanoic acid affects indicators and will react with metals e.g magnesium.

Ethanoic acid is a weak acid. Even though it is a weak acid, it will still react with bases to form salts. For example, the salt sodium ethanoate is formed when ethanoic acid reacts with dilute sodium hydroxide

ethanoic acid + sodium hydroxide \rightarrow sodium ethanoate + water

 $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H2O(l)$

Carboxylic acids will react with alcohols to produce an ester.

Therefore, ethanoic acid will react with ethanol, in the presence of a few drops of concentrated sulfuric acid, to produce ethyl ethanoate – an ester.

 $\begin{array}{rcl} ethanoic & + & ethanol & \stackrel{conc}{\Longrightarrow} & ethyl & + & water \\ acid & & & H_2SO_4 & ethanoate \\ CH_3COOH(1) & + C_2H_5OH(1) & \stackrel{\frown}{\Longrightarrow} & CH_3COOC_2H_5(aq) & + & H_2O(1) \end{array}$

This reaction is called esterification. Members of the 'ester' family have strong and pleasant smells. They have the general formula

 $C_n H_{2n+1} COOC_x H_{2x+1}$

Uses of Carboxylic Acids

Name of acid	Use		
Formic acid (methanolc acid)	The sting in an ant bite (the ant actually bites you, then quickly turns round and squirts the acid into the bite from a gland in its tail)		
Acetic acid (ethanoic acid)	Vinegar		
Citric acid	Orange and lemon juice		
Tartaric acid	Used in cooking		
Malic acid	In sharp-tasting apples		
Lactic acid	In milk. It is also made in your muscles when you are tired and cannot get enough oxygen. It causes muscle cramp. If you run upstairs quickly, it is the substance that causes pain in your knees.		
Aspirin (acetyl salicylic acid)	Originally found in the bark of a tree. These days it is made artificially and used as a medicine.		
Stearic acid (and others)	Soaps		

Topic 3.14 Esters

Members of the 'ester' family have strong and pleasant smells. Many esters occur naturally and are responsible for the flavours in fruits and the smells of flowers. They are used, therefore, in some food flavourings and in perfumes

Esters are named after the acid and alcohol from which they are derived:

- name alcohol part first, acid part second, e.g. propyl ethanoate
- formula acid part first, alcohol part second, e.g. CH₃COOC₃H₇

some examples of esters;

Hydrolysis of Esters

Alkane		Alkyl group	
Formula	Name	Formula	Name
CH4	Methane	-CH3	Methyl-
C ₂ H ₆	Ethane	-C ₂ H ₅	Ethyl-
C ₃ H ₈	Propane	-C ₃ H ₇	Propyl-
C₄H ₁₀	Butane	-C4H9	Butyl-
C ₅ H ₁₂	Pentane	-C _s H ₁₁	Pentyl-

In hydrolysis reactions, the ester is split into the carboxylic acid and the alcohol parts of the molecule. This is the reaction used to make soap.

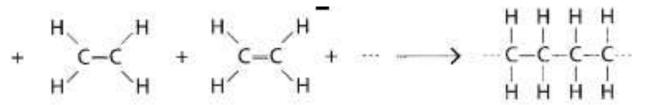
Uses of Esters

- The solvent is nail vanish is a solvent called amyl acetate
- Manufacture of soap
- Animal fat and vegetable oils are made of esters

UNIT 4 MACROMOLECULES

Topic 4.1- Macromolecules: Key Points

- Macromolecules are large molecules that contain a long chain of carbon atoms. Some occur naturally, while others are synthetic plastics and fibres.
- Synthetic macromolecules are polymers such as ployethene, trylene and nylon. These are long chains of small molecules called monomers, joined together end to end.
- Addition polymers are formed from alkenes using high pressure and a catalyst. Common examples are polyethene, polyvinyl chloride and polypropylene
- Condensation polymers are formed from two different monomers that react, eliminating water in the process. The polymer contains a chain of the monomers, one after the other. E.g nylon and terylene. Nylon contains an **amide** link between the monomers. Terylene contains an ester link between the monomers
- Thermoplastic polymers soften on heating and can be reused. Thermosetting polymers undergo a chemical change when they are heated and will not soften when they are heated again. Thermosetting polymers are hard polymers, and used to cast plastic objects such as electrical goods.
- Most plastics are not biodegradable and can cause pollution if not recycled
- Examples of natural macromolecules are proteins; carbohydrates and fats. In proteins, the monomer is one of 20 amino acids and they are linked together by amide bonds. Carbohydrates are ploymers of **glucose** linked by a **glycosidic bond** formed by one oxygen atom. Fats are esters made from fatty acids and an alcohol called **glycerol**
- Proteins, carbohydrates and fats can all be broken down by hydrolysis. This happens in our bodies, usually with the help of enzymes. It can also be carried out in laboratories, and the products of the hydrolysis can be identified using chromatography
- The hydrolysis of fats is an important commercial reaction called **saponification**. It is used to make soap by hydrolysing fats or oils.


Topic 4.2- Synthetic Polymers

Synthetic means these polymers are made by people. The molecules are called polymers because they are made up of many small parts joined end to end like links in a chain. Each of the individual parts of the polymer is called a **monomer**

Addition Polymers:

Polyethene is a very common material. The polymerization of ethene is an adittion reaction. The equation below shows how two ethene molecules join together.

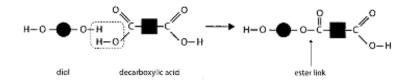
Common polymers are made from alkenes as shown below:

Monomer		Polymer			
Name	Structure	Name	Structure	Use	
Propene (propylene)	сн _к н с=сн	Polypropylene	СН, Н СН, Н СН, Н 1 1 1 1 - С - С - С - С - С - С 1 1 1 Н Н Н Н Н	Water pipes	
Chloroethene (vinyl chloride)	сі, н с=с н н	Polyvinyl chloride (PVC)	СІ Н СІ Н СІ Н — С-С-С-С-С-С-С- — І – І – І – І — І – І – І – І — Н Н Н Н Н Н	Electrical insulation	
Tetrafluoroethene (tetrafluoro- ethylene)	F C=C F F	Polytetrafluoro- ethylene ('Ptfe') ('teflon')	F F F F 	Non-stick pans	

Condensation Polymers

Not all polymers are formed by addition reactions. Nylon is an example of a condensation polymer. It is made by reacting two different chemicals together, unlike poly(ethene) which is made only from monomer units of ethene.

Poly(ethene), formed by addition polymerisation, can be represented by:

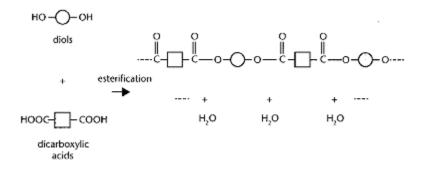

-A-A-A-A-A-A-A-A-A-A-

Terylene another condensation polymer, is a condensation polymer. It has two monomer units. A basic representation of terylene:

-A-B-A-B-A-B-A-B-A-B-

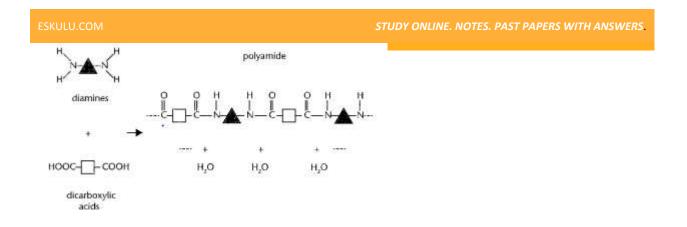
A **polyester** is a long chain compound, containing alternately the alcohol part and then acid part of the ester. How the parts combine to form a polyester is shown below.

Diol is the alcohol part and dicarboxylic acid is the acid part.



The link between the monomers is the **ester link** , -CO-O- . Many more links can form in the same way to make long polymer chains.

The squares shown above represents the dicarboxylic acid and the diol is represented by a circle.


Terylene is a polyester made by condensation reactions. The monomers used are; ethanediol (the diol) and terephtallic acid (the carboxylic acid) The link between the monomers is the ester link –CO-O-

The following shows how terylene is formed

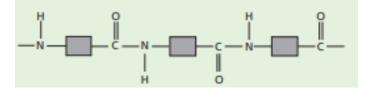
Nylon is another well-known condensation polymer. It is not a polyester but a polyamide. It has the –OH group instead of an alcohol. They use a substance called an **amine**, -NH₂. However the reaction is the same.

The structure of the polymer that is formed is almost the same as a polyester, but a nitrogen atom replaces the place of the oxygen atom. This link is called an amide link: -CO-NH-

Both terylene and nylon are used as fabrics.

Topic 4.3 – Natural Macromolecules

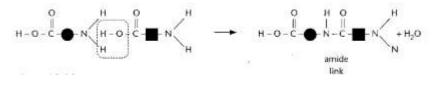
Proteins


Proteins are natural polymers with a polyamide structure. Proteins are made up of amino acids.

There are 20 different amino acids and they each possess two functional groups. One is the carboxylic acid group, -COOH. The other is the amine group, $-NH_2$

Amino acids are the building blocks of proteins. Similar to nylon, proteins are polyamides, as they contain the –CONH– group, which is called the amide or, in the case of proteins, the peptide link.

Proteins are formed by condensation polymerisation.

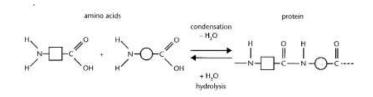

Protein chains formed by the reaction of many amino acid molecules have the general structure shown below.

Further reaction with many more amino acids takes place at each end of each molecule to produce the final protein

For a molecule to be a protein, there must be at least 100 amino acids involved. Below this number, they are called polypeptides.

Water is produced during the creation of protein. Therefore, it is a condensation reaction. The condensation is shown below

Reactions of Proteins


Proteins can be broken down into the amino acids from which they were made. This is called hydrolysis

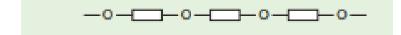
Hydrolysis is the reverse reaction of condensation.

Condensation is the reaction in which two compounds join together with water as the only by-product

Hydrolysis is the process in which a substance is broken down by heating it with water. The water is usually made either acidic or alkaline, which makes the reaction proceed faster.

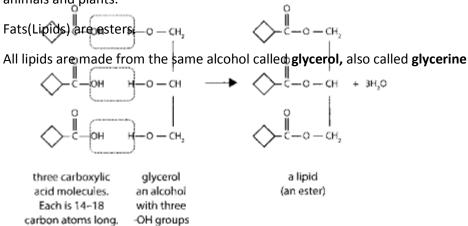
The following shows condensation and hydrolysis:

We can tell which amino acid is present in a protein. First, the protein is hydrolysed in acidic solution. The mixture of amino acids is then separated using chromatography. The paper used in the chromatography is covered in a **locating agent** that changes colour when amino acids react with it.


Another way of hydrolyzing a protein is to use an enzyme. Enzymes are also proteins.

Carbohydrates

These are substances that are usually made by plants. The name tells us that they contain the elements; carbon(carbo-), hydrogen(hydr-), oxygen(-ate)

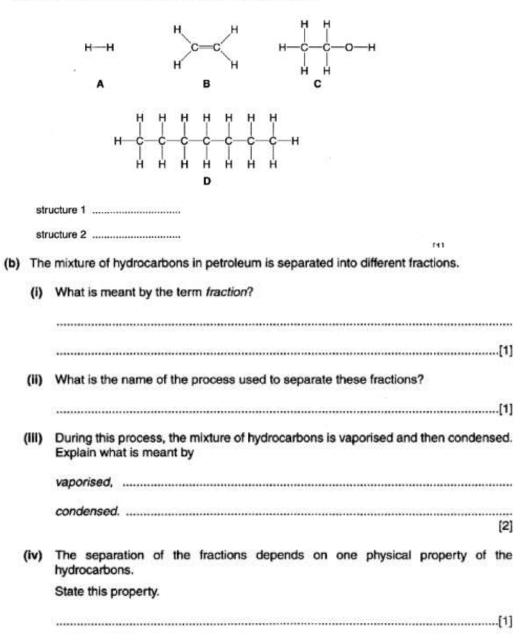

Starch, cellulose etc are carbohydrates. Starch and cellulose are both condensation polymers of glucose.

The structure of starch is shown below.

Fats and Oils (Lipids)

Fats and oils are well-known macromolecules. We use them in cooking, and they are found in almost all animals and plants.

Making Soap


Fats are esters. Fat is hydrolysed, in other words, **saponified** to break it down into glycerol and fatty acids. The fatty acids in fats are used to react with other substances to make salts. These salts are actually what we know as soap.

EXAM TYPE QUESTIONS AND ANSWERS

Instructions:

*attempt to answer these questions before looking at the answers

- 1. Petroleum is a mixture of many different hydrocarbons.
 - (a) Which two of the structures A, B, C and D are hydrocarbons?

[4]

(c) Octane is a hydrocarbon which can be cracked to produce two different hydrocarbons, hexane and ethene.

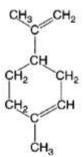
			C ₈ H ₁₈ octane	\rightarrow	C ₆ H ₁₄ hexane	+	C ₂ H ₄ ethene
(i)	Sta	te two cor	nditions whi	ch are	used to cra	ck octa	ane.
	1.						
	2.						[2]
(11)	Wh	ich of the	three hydro	carbon	s in the equ	ation	above is used to make a polymer?
							[1]

(d) In the diagram below, the boxes on the left give the names of some petroleum fractions. The boxes on the right show some uses of these fractions. Draw lines between the boxes to link the fractions to their correct uses. The first one has been done for you.

1. (a) B and D

(b)(i) Substance or group of substances with a specific boiling range or condensed at a similar temperature

- (ii) Distillation/fractional distillation/fractionation
- (iii) Vaporised change of state to gas


Condensed – change of state from gas to liquid

- (iv)boiling point
- (c)(i) high temperature

(ii) ethene/C₂H₄

- (d) petrol → fuel for cars lubricating fraction → waxes and polishes paraffin(also called kerosene) → aircraft fuels
 - bitumen \rightarrow making roads

(a) The structure of limonene is shown below.

(i)	What is the molecular formula of limonene?
	[1]
(ii)	Some limonene was added to a few drops of aqueous bromine. What colour change would you see in the aqueous bromine?
	[2]
(iii)	What feature of a limonene molecule is responsible for this colour change?
	[1]
(iv)	Name the two substances formed when limonene is burnt in an excess of oxygen.
	and

2. (a)(i) C₁₀H₁₆

- (ii) brown/orange/red to colourless
- (iii) C = C bond / carbon carbon double bond
- (iv) carbon dioxide and water

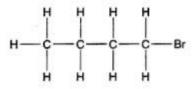
Ethene, C2H4, is manufactured by cracking petroleum fractions.

3. (a) (i) What do you understand by the term fraction?

		[1]
	(ii) Complete the symbol equation for the manufacture of ethene from dodecane, $C_{12}H_{26}$.	
	$C_{12}H_{26} \rightarrow C_2H_4$ +	[1]
	(b) Two fractions obtained from the distillation of petroleum are refinery gas and gasoline. State one use of each of these fractions.	
	refinery gas	
	gasoline	[2]
(c)	Ethene is an unsaturated hydrocarbon. What do you understand by the following terms?	
	unsaturated	
	hydrocarbon [2]	ľ.
(d)	Ethene is used to make ethanol.	
	(i) Which of these reactions is used to make ethanol from ethene? Tick one box.	
	catalytic addition of steam	
	fermentation	
	oxidation using oxygen	
	reduction using hydrogen	r.

(ii) Draw the structure of ethanol, showing all atoms and bonds.

 (e) Ethene is used to make poly(ethene). Complete the following sentences about this reaction. Use words from the list below.
 additions carbohydrates catalysts monomers polymers
 The ethene molecules which join to form poly(ethene) are the ______.
 The poly(ethene) molecules formed are ______. [2]
 [Total: 11]


ANSWERS

3.(a)(i) (group of) molecules with similar boiling points/ (group of) molecules with similar relative molecular masses / molecules with limited range of boiling points / molecules coming off at the same place in the fractionation column / owtte

- (ii) C₁₀H₁₂
 - allowed: reasonable mixtures, e.g C₇H₁₆ + C₃H₆
- (b) refinery gas: (fuel) for cars / (fuel) for cooking; cooking ; gasoline: (fuel) for cars / mowers etc.
- (c) unsaturated: contains double bonds / contains C = C bonds hydrocarbon: containing carbon and hydrogen **only**
- (d) (i) 1st box down ticked (catalytic addition of steam)
 (ii) correct structure of the ethanol; bond between O-H
- (e) monomers; Polymers;

[2]

- Organic compounds that contain the halogens can have chloro, bromo or iodo in their names.
 - (a) The following diagram shows the structure of 1-bromobutane.

(i) Draw the structure of an isomer of this compound.

(ii) Draw a possible structure of a dibromobutane.

(iii) Name two chemicals that react together to make only one product – dibromobutane.

(b) Draw a diagram to show the arrangement of the valency electrons in the covalent compound chloromethane. Use o to represent an electron from carbon Use x to represent an electron from hydrogen Use & to represent an electron from chlorine

ANSWERS

4. (a) (i) correct formula of an isomer[1 mark]

```
CH<sub>3</sub>.CH<sub>2</sub>.CHBr.CH<sub>3</sub> [1 mark]
```

```
or CH_3.CH(CH_3).CH_2Br
```

```
or (CH<sub>3</sub>)<sub>3</sub> CBr
```

- (ii) any correct formula for a dibromomethane [1 mark]
- (iii) butene

bromine

(b) correct formula CH₃Cl showing 8e around C and Cl and 2e around

The alcohols form an homologous series.

(a) Give three characteristics of an homologous series.

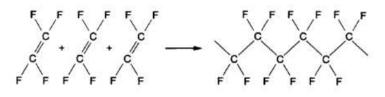
 •••••
 [3]

ANSWERS

5. (a) Any three from:

same general formula; consecutive members differ by CH₂; similar chemical properties; same functional group; physical properties vary in a predictable way/give trend such as mp 6.

(a) The structure of tetrafluoroethene is shown below.



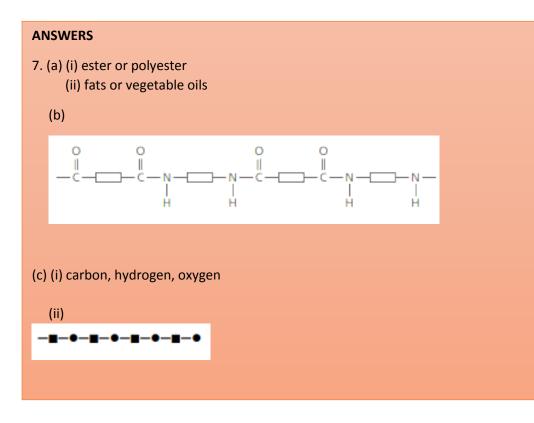
(i) Use the Periodic Table to help you calculate the relative molecular mass of tetrafluoroethene.

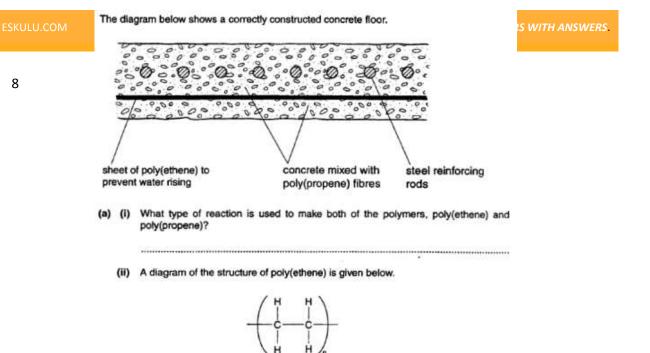
[2]

(ii) Teflon is used to make non-stick coatings for saucepans.

Teflon is made when many molecules of tetrafluoroethene join together.

What type of chemical reaction is shown in this equation?


ANSWERS


(a)(i) 100

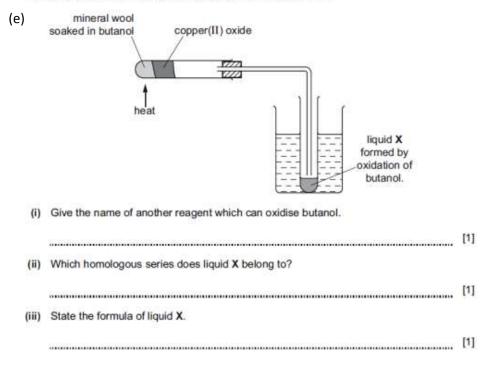
(ii) addition or polymerisation

7 (a) The structure of the synthetic polymer Terylene is given below.

<l

Draw a similar diagram to show the structure of poly(propene).

8. (a) (i) addition or addition polymerisation


(ii) correct repeat unit showing branched CH₃

9 There are two types of polymerisation, addition and condensation.

(a) Explain the difference between these two types of polymerisation.

 [2]

Copper(II) oxide can oxidise butanol to liquid X, whose pH is 4.

- 9. (a) addition: polymer is the only product/only one product condensation: polymer and water formed/small molecule
 - (e) (i) (acidified) potassium manganate (VII) allowed: oxygen/air/(acidified) potassium chromate(VI)
 - (ii) carboxylic acid allowed: aldehyde/ketone
 - (iii) $C_4H_8O_2$ allowed: C_4H_7OOH

*Lanthanide series **Actinide series	Hydrogen 1,008 Soduum 22,990 11 11 11 11 11 11 11 11 11 11 11 11 11
de series series	4 Beryflum 9,012 12 Magnesum 24,305 20 20 20 20 20 20 20 20 20 20 20 20 20
57 La Lanthanum 138,905 89 Actinium [227]	* 57 - 70 *
58 Cerium 140,116 90 Thorium 222,038	Averag 21 21 21 21 21 22 Scandium 44.956 39 71 71 71 71 71 71 71 71 71 71 71 71 71
59 Pr Prasecolymum 140,908 91 91 91 91 231,036	Atomic Number Symbol Name Average Atomic Mass Average Atomic Mass andum 103 39 40 4956 47.867 71 71 71 71 71 71 71 72 71 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 72 71 71 71 71 71 71 71 71 71 71 71 71 71
60 Neodymium 144.242 92 Uranlum 238.029	
61 Prometrium [145] Nop Neputrium	- 6 - Carbon - 12.011 - 12.011
62 Samarium 150.36 Pluaonum [244]	25 Marganese 54.938 Phonum 197 107 105 207
53 Europium 151.964 95 Americium [243]	To The State of Contract of Co
64 Gadolinum 157.25 96 Currum [247]	non med sayar say say say sayar say say say sayar say say say say say say say say say say
65 Torbium 158.925 97 97 88 82 88 82 97 97 88 82 97 97 88 82 97 97 97 97 88 82 97 97 97 97 97 97 97 97 97 97 97	metals metaloids metaloids 88.933 89.944 100 110 100 110 100 100 100 100 100 1
66 Dysprosum 162.500 98 Caliomum [251]	S S S S S S S S S S S S S S S S S S S
67 Holmum 164,830 99 Ersteinium [252]	30 Zinc 65.38 48 48 48 48 48 48 48 48 48 48 48 48 48
68 Erolum 167 259 Fermum [257]	5 Boren 1081 1081 1081 1081 1081 26.982 21 26.982 114.818 114.818 114.818
69 Trailum 101 101 Marcaeevum (258)	Carbon 12.011 28.055 Slicon 28.055 Slicon 72.630 Th 118.710 118.710
70 Ybb Yterbum 173.045 102 Nobelium (259)	Vitrogen 14.007 7 90.974 30.974 30.974 30.974 30.974 30.974 14.007 74.922 74.922 74.922 74.922 74.922
	Billing Bil
	водине 128.994 117 117 128.904 79.904 128.904 79.904
	20.180 10 20.180

References

Pixabay.com Physicsandmathstutor.com

Wikimedia Commons